
www.professionaltester.com • Professional Tester April 2004

A test automation architecture is the same as
a software architecture but built in the
language of the test tool. But what is a soft-
ware architecture?

What is an architecture?

�The software architecture of a program or
computing system is the structure or structures
of the system, which comprise software compo-
nents, the externally visible properties of those
components, and the relationships among them�
�Software Architecture in Practice, Bass et al,
(Addison-Wesley 1997)

So, a software architecture is the structure
of the source code and the relationship
between the components. In civil engineering,
the architecture is the overall structure of the
building. The architecture provides the space
for the functional use of the building and ulti-
mately is the major factor affecting how
successful it is at fulfilling its purpose. 

We have already seen that scripted test
automation consists of code and is really a
product of software engineering, therefore it
should have a good architecture to be success-
ful. Little wonder that test automation does not
get very far when left to junior programmers
or testers when they have some spare time. No
matter how hard-working these people may be
it is too much to expect them to create a good
architecture. They are often too busy with the
low level detail to be able to see the overall
structure and do not have the software engi-
neering experience to design architectures.
They are builders, not architects.

A good test automation architecture
provides structures for logging and error

reporting and allows recovery to be incorpo-
rated (dropping failed tests, navigating the
system to a base point and continuing with the
next test). It will have libraries of reusable
functions in much the same way as any other
software system. Most importantly of all its
structure will minimise the code maintenance
overhead and thus it is the starting point for
success with test automation. 

Advanced test automation architectures
are really the logical place to go when you
take a software engineering approach to
building test automation. So how do
advanced automation architectures differ
from the basic data driven approach? 

In order to illustrate this, let�s first look at
some data used in data driven automation (see
figure 1). In this example of Excel test data,
every line (except the heading line) has
customer details in it. Column 1 is the
surname, column 2 the first name etc.

In the test tool there will be a
function which repetitively reads in
this data and inputs it into the �Add
customer� windows or screens. Most
basic data driven architectures for
more complex
systems involve
many different
data files for the
different types of

business functions and many
automation programs to
input the data. 

One of the main disadvantages of the basic
data driven approach is that the automation
pumps data into the system in an unnatural
way. Most regression tests are not about repet-
itively inputting similar data into the user
interface; rather they seek to fully exercise all
of the business functionality of the system
under test in a realistic way. 

Automated testers have recognised this for a
while now and some provide a solution for it
by adding in another layer to the automation
which specifies the order in which data is used

from the various files. For example in an insur-
ance system, the extra layer would select the
customer data to add, then select the insurance
policy data to add for that customer and so on.
This however becomes a mess architecturally. 

What the advanced architectures do is take
(at least some) of the navigation and actions
out of the test programs and put them into the
test data. The test data becomes the script�the
sequence of actions to be followed. It tells the
automation code what to do and in what order.
Advanced architectures allow the test analyst
some choice about what the sequence of events
should be. The level of choice is dependent
upon how sophisticated the architecture is. 

Figure 2 illustrates data from an advanced
approach. Note that if there is a hash at the
beginning of the left hand column this means
that the line is a comment and not test data.
Lines beginning Supplier_Add or
Stock_Item_Add are the actual test data
which will be read by the automation code.
The format of the file is very different to that
in figure 1 because the meaning of the data in
each column is dependent upon what type of
line it is and this is defined in the first column.
The comment lines give the format so that the

test analyst knows what each column repre-
sents. For example in the seventh line, column
four is the �Name� field because this is a
Stock_Item_Add format. Thus the test
analyst can choose the order of the actions
when creating the Excel data.

When the automation runs, a driver
program reads through the data and calls the
function specified in column 1 passing it the
data for that particular line. For example there
will be a function Stock_Item_Add which
will have been written by the test programmer
(scripter) in order to perform all of the actions

Ghost in the
Machine
John Kent, MD of Simply Testing Ltd, continues his series.

Part 4: Advanced test automation architectures

Figure 1: Simple �data-driven� data

Figure 2: Advanced architecture data



required to add a stock item. These functions
are what are known as wrappers. 

Automation wrappers

Wrapper is an OO term that means some
software that is used to interface with an
object. In programming terms you call the
wrapper if you wish to use the object. You
can�t call the object directly. 

In test automation, wrappers are programs
or functions written in the language of the test
tool which perform discreet automation tasks
as instructed by the test data and actions. They
provide the interface between the test and the
system under test�s user interface. In our previ-
ous example there are four wrappers �
Stock_Item_Add, Loc_Add, Supplier_Add
and Stock_Loc_Add. These are business level
wrappers � they �wrap� business functions and
were written by the test programmer (scripter).
You will be able to see that the example in
figure 2 is similar to the data driven approach
but the first column in the test data of each line
tells the automation which wrapper to call. 

There are two distinct types of advanced
architecture. Figure 2 shows a business object
level architecture. In this type of automation
architecture, one automation function or
program is written in the test tool for each
type of business task. These functions are the

wrappers for the busi-
ness tasks.

Usually a functional
decomposition of the
system is the first step
in building this type of
architecture. In a func-
tional decomposition,
the basic business
functions of the system are defined. Then the
wrappers for each business task are
programmed (scripted) and the data format for
each task is created.

Test data in business object level architec-
tures is at the business language level and
therefore understandable by end users, which
is a great advantage. 

Screen/window level architectures

In this architecture there is one test
program that deals with each screen/window
in the system�it acts as a wrapper for that
screen/window. It handles all of the input and
output (getting expected results) for its
window or screen. See figure 3 for an example
of the data. Again lines with a hash in the left
hand side are comments used to show the test
analyst the format of the data for that
screen/window. The other lines are the test
data which is passed to the automation wrap-

pers for that particular screen. The first column
of the test data represents the screen that the
data refers to and thus the format of the line is
dependent upon what the screen name is in
column one. Also note that, as this a test of a
GUI system, for each user interface object
there is an action and a data field. Thus the test
analyst can specify actions like �Check� that
the object contains the data equal to �Smith� or
even �CheckEnabled�.

One of the biggest advantages of
screen/window level architectures is that all of
the user interface objects can be made available
to the test analyst in Excel and thus the analyst
has complete control over what the navigation
and actions should be, rather than being depend-
ent upon what the test automation programmer
(scripter) has put into the wrapper�as with
business object level architectures.

Next issue: New ways to create
automation code PT

Figure 3: Screen\window level advanced architecture data

April 2004 Professional Tester • www.professionaltester.com


