John Kent's column

The view from

John Kent begins a new
series on test automation

Ghost in the machine: automated testing

Part |I: The myth of record/playback

Introduction

Software test automation seems to be on every test
manager's list of things to have. Every test organisation
wants it. The automation tracks at conferences are
usually the best attended and most of the large test tool
vendors have made themselves large by selling tools to
do it. It is often, mistakenly, the first thing people start
with when they embark upon improving their testing
procedures. All of this illustrates how attractive test
automation is - not how easy it is.

The attraction to test automation is strange when you
consider how little success it has had. How many
automation projects return real benefits for their
investments? In automation circles there is a debate
about why the success rate is so low. Is it because the
wrong tools are being used? Is it because of a lack of
management commitment? Is it a failure to manage
expectations? All of these things are important, but
much more important than these is the fact that the tech-
nology and the way it is used is immature.

Scripted tools running under Windows have only
been around for a short while - Microsoft Test (now
Visual Test) version 1.0 came off beta test in early
1992, about the same time as the other major tools we
now have. The technology is difficult to use, but new
approaches to their use are evolving and it is an
exciting time to be involved in this area. One
element in these new ways to build test automation is
a software engineering approach to the automation
architectures.

We will discuss architectures in a later article but first
let’s look at the biggest myth in software test
automation: record/playback.

Just before we do that it is worth underlining what
we are talking about here. The script-based tools such
as Robot, SilkTest, WinRunner and QARun are used to
play actions-key stokes and mouse clicks-into user
interfaces. We are not talking about what are
commonly called test harnesses used by programmers
at unit test level. The tools we are discussing are
generally used by test teams to automate system and
regression tests.

Record/playback

Automated testing tools are often called 'capture/
playback' or 'record/playback’. It sounds great doesn't it?
"...all you have to do is simply record your tests and
replay them whenever you like." It is a sad fact that this
is not the whole truth. Record and playback looks great,
but it only really does what is it is supposed to do in one
situation: the tool vendor's sales demo. It is the ideal
sales feature - you will see a great demonstration of a
software robot doing the work a highly paid technician
used to do. It's simple and you don't need expertise to do
it. Wonderful, I'll have four please.

Record/playback means recording actions against
your system's user interface in a 'script’, and then
replaying it back into the system under test (this does not
apply to mainframe tools, which are not script based).
The recorded script will be a series of actions in the
tool's language. When you replay the script, the tool
replays the actions back into your system under test's
user interface. As an example, let's try a live demo - well
at least as 'live' the written page will allow:

I'll record myself typing in the next sentence using
Visual Test. Here we go: Recording also produces
unmaintainable scripts that consist of a long list of
references to objects on your user interface.

I've just stopped the recorder and this is what the
recording (the script) looks like:

CurrentWindow = WFndWndC ("Microsoft
Word - TVFK.rtf", "OpusApp",
FIND AND MAX, timeout)

Play "{Click 538, 0, Left}"
Sleep(2.374)

Play "{ENTER}Recording also pr"

Play "oduces
BS}unmaintaai{BS}{BS}inable scripts"
Play " that"

Play " "

Play "consist of a long list of refer-
ences to objects on your ue{BS}ser
interface"

Play "."

PROFESSIONAL TESTER SEPTEMBER 2002



Kent

The '{BS}'s are where I have typed a backspace. I'll try
to play this back (it should type the next paragraph) and
see what I get:

Recording also produces unmaintainable scripts that
consist of a long list of references to objects on your user
interface.

Brilliant, so it works. So now I'll record underlining
the word unmaintainable here and italicising it by select-
ing it with the mouse and clicking the Underline and
Italics buttons. This is what I get when recording with
Visual Test:

Play "{BtnDown 409,
Sleep(5.232)

Play "{BtnUp 513, 137, Left}"
Sleep(2.106)

Play "{Click 302, 53, Left}"
Play "{Click 320, 53, Left}"

136, Left}"

I tried to replay this and eventually, after some editing
of the script, got it to work. I had to remove the first
sleep statement in order ensure that the word was
selected and of course I took the underline and italics off
in order to return to the initial state prior to running. It
worked after editing, but look at this script. Not only is
it unpleasant code, it is also unmaintainable - well, at
least very difficult to maintain - because it has XY co-
ordinates of mouse-clicks and it is therefore almost
impossible to identify what it is doing to which user
interface objects.

To be fair to the tool vendors, they have improved their
recorders so the user interface object on which the actions
are performed is identified in the recording for most of
the common user interface development tools. Below is
a fragment of Rational Robot recording where an 'OK'
button is clicked and a File|Exit menu item is clicked.

PushButton Click, "Text=0K"
MenuSelect "File->Exit"

In WinRunner TSL the same actions look like this:
button press ("OK") ;
menu_select item ("File;Exit");

In QARun they look like this:
Button "OK", 'Left SingleClick'
MenuSelect "File~Exit"

These are all better than the XY co-ordinate mouse-

click situation but they are still not good enough to make
record/playback practical for large-scale automation.

PROFESSIONAL TESTER SEPTEMBER 2002

Insert this side into recorder Do not touch the tests inside

The code fragments look maintainable and they are - but
this maintenance is only practicable on a small scale.

We are at the most important issue in automation here.
It is this issue of maintenance that is key to the success
of test automation projects. With automation you are
interested in testing the system as it is changed. The user
interface and behaviour of the system changes over time
and you must change your automation to work with the
changed System Under Test (SUT). In test automation
you are interested in subsequent releases of the SUT
because you have already proven that the system does
what you've recorded. The payback with automation
starts when you test later releases of the system.

Yes, you can maintain the above automation code
(script) fragments. You can even maintain the first script
with its XY co-ordinates. Yes it is possible to maintain
scripts like these but is it practicable? How many lines
of script do you think you will need for a system test or
regression test? That is very much dependent upon how
many windows/screens your system has and how many
tests you want to perform. My current client has 949
screens in their system. A while back one of my clients
had an automated regression test pack consisting of
70,000 lines of recorded automation code. That's 70,000
lines of code to maintain as the system changes - a huge
task - in fact too big a task for most test organisations as
my client discovered. You could maintain the code but
it would take such a huge team that it would be
prohibitively costly.

Thus with record/playback, the more tests you record,
the more automation code you have to maintain until you
reach a point where the maintenance burden becomes too



John Kent's column

The myth of record/playback

great for your budget. So it is the really the cost of
maintenance that is the key issue governing the success
or not of software test automation. Yes, it is possible to
maintain recorded automation code but it is the cost of
doing this for large recorded test packs that makes it
impractical.

We haven't finished putting record/playback in its
place yet. There are more arguments against using it for
large numbers of tests, the most important of which is
that re-runnable tests must cope with what may happen,
not simply what sas happened.

For example, one of the objectives of running tests
against a system is to find errors. The automated tests
must have code which recognises errors and this must be
programmed into them. If they don't have this
intelligence and an error is encountered during a test run,
the whole test schedule will come to a stop. It is indeed
ironic that, although the objective of automated testing is
to find bugs, if the SUT behaves in an unexpected way -
i.e. there are bugs - then these automated tests will not
work.

Thus a test cannot simply be a recording played back
into the System Under Test (SUT), rather it needs to be
an interaction between the test tool and the SUT. You
can use recording as a way of helping to create
automated tests but you will have to take them and mod-
ify them by programming. Record/playback tools are
not really Record/playback at all; they are program/play-
back tools.

There are still more arguments against record/play-
back. There are problems with synchronisation and
object identification. Perhaps the best demonstration of
what is wrong with it can be seen if you try recording
just one hour of input with one of the modern script-
based tools against your system. Take a look at the
recording and see if you think you could maintain just
one hour's worth. Then run it and see how well it
replays. Without knowing anything about your system I
can guarantee that it will not run all the way through.
Record/Playback may be OK for knocking together
short, simple demonstrations but for large, real-life
automated regression tests it is a non-starter.

John Kent

Managing Director of CISS Ltd
who specialise in test automation
©CISS Ltd 2002

PROFESSIONAL TESTER SEPTEMBER 2002



